Generating of Task-Based Controls for Joint-Arm Robots with Simulation-based Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Reinforcement-Based Learning for Process Classification Task
In this work, we present a reinforcement-based learning algorithm that includes the automatic classification of both sensors and actions. The classification process is prior to any application of reinforcement learning. If categories are not at the adequate abstraction level, the problem could be not learnable. The classification process is usually done by the programmer and is not considered a...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولMulti-task learning with deep model based reinforcement learning
In recent years, model-free methods that use deep learning have achieved great success in many different reinforcement learning environments. Most successful approaches focus on solving a single task, while multi-task reinforcement learning remains an open problem. In this paper, we present a model based approach to deep reinforcement learning which we use to solve different tasks simultaneousl...
متن کاملMeasuring the Effectiveness of Reinforcement Learning for Behavior-Based Robots
We explore the use of behavior-based architectures within the context of reinforcement learning and examine the eeects of using diierent behavior-based architectures on the ability to learn the task at hand correctly and eeciently. In particular, we study the task of learning to push boxes in a simulated 2D environment originally proposed by Mahadevan and Connell Mahadevan and Connell, 1992]. W...
متن کاملSelf-Motivated, Task-Independent Reinforcement Learning for Robots
This paper describes a method for designing robots to learn self-motivated behaviors rather than externally specified behaviors. Self-motivation is viewed as an emergent property arising from two competing pressures: the need to accurately predict the environment while simultaneously wanting to seek out novelty in the environment. The robot’s internal prediction error is used to generate a rein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SNE Simulation Notes Europe
سال: 2018
ISSN: 2305-9974,2306-0271
DOI: 10.11128/sne.28.tn.10442